

EXEMPLAR

90172

901720

NEW ZEALAND QUALIFICATIONS AUTHORITY
MANA TOHU MĀTAURANGA O AOTEAROA

For Supervisor's use only

Level 1 Chemistry, 2007

90172 Describe atomic structure and bonding

Credits: Three

9.30 am Monday 19 November 2007

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

A metal activity series, solubility rules, a table of ions and a periodic table are provided in Resource Booklet L1-CHEMR.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–7 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

For Assessor's use only		Achievement Criteria		
Achievement	Achievement with Merit		Achievement with Excellence	
Describe atomic structure and bonding.	<input checked="" type="checkbox"/>	Link principles of atomic structure, bonding and selected properties.	<input type="checkbox"/>	Discuss selected properties in terms of atomic structure and bonding.
Overall Level of Performance				A

You are advised to spend 30 minutes answering the questions in this booklet.

Assessor's
use only

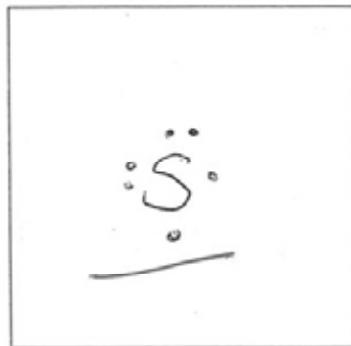
QUESTION ONE

Complete the following table.

24 • 3 not accepted.

Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Atomic Number	Mass Number
Mg	12	12	12	12	24
Li	3	3	3	3	6
Li	3	4	3	3	7
N ³⁻	7	7	10	7	14
Ca ²⁺	20	20	18	20	40

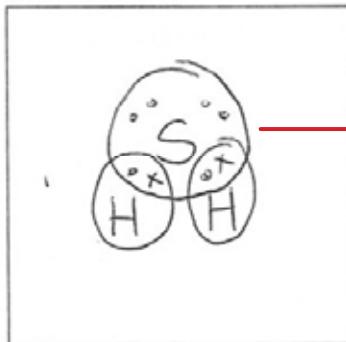
A


QUESTION TWO

Use the Periodic Table provided to answer the following questions on sulfur.

(a) (i) Write the chemical symbol for the sulfur atom.
 (ii) Write the electron arrangement for the sulfur atom.
 (iii) Write the chemical symbol for the sulfide ion.
 (iv) Write the electron arrangement for the sulfide ion.

S
 2,8,6
 S²⁻
 2,8,8


(b) (i) Draw the Lewis structure for the sulfur atom.

A

(ii) Draw the Lewis structure for hydrogen sulfide, H₂S.

Assessor's
use only

Circles accepted

A

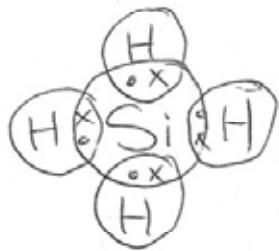
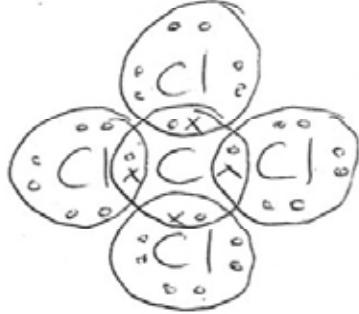
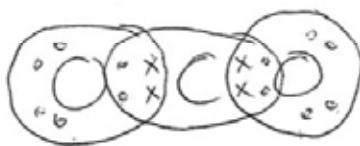
(c) Discuss the electrical conductivity of sulfur and sodium sulfide as solids and as liquids (when heated to molten).

You should include in your answer information on the types of particles in each substance, and the attractive forces between them.

S, Na₂S

Ionic bonding = Na₂S - (3-1) electrostatic attraction between oppositely charged particles to form a crystal lattice
Sodium is a non metal, it does not conduct. Sodium is highly reactive so

there is a strong $\frac{1}{2}$ attraction force between Na₂S.




Sodium sulfide ~~will not conduct~~ as a solid but will when molten or dissolved, because there are free ions to carry an electrical charge when molten or dissolved but not when as a solid.

Sulfur is ~~not~~ a metal and will conduct

M

QUESTION THREEAssessor's
use only

Draw the Lewis structures for the molecules given in the box below.

(a) Silicon hydride, SiH_4 (b) Tetrachloromethane, CCl_4 (c) Ammonia, NH_3 (d) Carbon dioxide, CO_2

Shape not drawn to convention

A

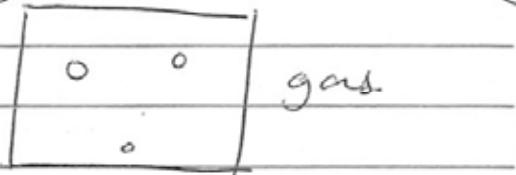
QUESTION FOURAssessor's
use only

Nitrogen and phosphorus can both form ions with a charge of -3 . Nitrogen forms the nitride ion, N^{3-} , and phosphorus forms the phosphide ion, P^{3-} .

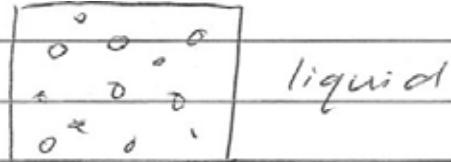
Explain why both of these elements form ions with the same charge of -3 .

pe Nitrogen and phosphorus are both located in ~~the~~ group 15. Both of these elements need to gain 3 electrons to complete their outer shell. When doing this they become an ion. It ~~is~~ has a charge of -3 because it has 3 extra electrons. Electrons have a negative charge, so it will have a charge of -3 . More negatively charged by 3 electrons. //

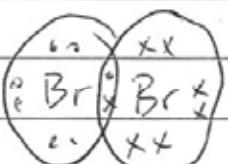
A


QUESTION FIVEAssessor's
use only

Fluorine, F_2 , is a gas and bromine, Br_2 , is a liquid at room temperature.


Discuss the different states of these elements at room temperature.

You should include in your answer information on particle separation, energy, particle motion and the attractive forces between the particles.


~~Fluorine F_2 is a gas. The particles in fluorine are moving around extremely fast, bouncing everywhere.~~

~~Bromine Br_2 is a liquid. The particles in bromine are moving, but not as fast as a gas.~~

F_2 is covalent bonding

Br_2 is also covalent bonding

These elements are highly reactive as they only need one more electron to complete their outer shell. If

N

Only one point made for each of F_2 and Br_2 .